Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
1.
Front Neurol ; 15: 1374365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595854

RESUMO

Objectives: This study aims to elucidate the role of peripheral inflammation in Huntington's disease (HD) by examining the correlation of peripheral inflammatory markers with clinical manifestations and disease prognosis. Methods: This investigation involved 92 HD patients and 92 matched healthy controls (HCs). We quantified various peripheral inflammatory markers and calculated their derived metrics including neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), and systemic immune-inflammation index (SII). Clinical assessments spanning cognitive, motor, and disease severity were administered. Comparative analysis of inflammatory markers and clinical correlations between HD and controls was performed. Kaplan-Meier survival analysis and Cox regression model were used to assess the effect of inflammatory markers on survival. Results: The study revealed that HD patients had significantly reduced lymphocyte counts, and LMR. Conversely, NLR, PLR, and SII were elevated compared to HCs. Lymphocyte levels inversely correlated with the age of onset and monocyte levels inversely correlated with the UHDRS-total functional capacity (TFC) scores. After adjusting for age, sex, and CAG repeat length, lymphocyte count, NLR, PLR, and SII were significantly correlated with the progression rate of TFC scores. Elevated levels of white blood cells and monocytes were associated with an increased risk of disability and mortality in the HD cohort. Conclusion: Our findings indicate that HD patients display a distinct peripheral inflammatory profile with increased NLR, PLR, and SII levels compared to HCs. The peripheral inflammation appears to be linked with accelerated disease progression and decreased survival in HD.

2.
Bioorg Chem ; 147: 107314, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38581967

RESUMO

The identification of novel 4-hydroxy-2-quinolone-3-carboxamide antibacterials with improved properties is of great value for the control of antibiotic resistance. In this study, a series of N-heteroaryl-substituted 4-hydroxy-2-quinolone-3-carboxamides were developed using the bioisosteric replacement strategy. As a result of our research, we discovered the two most potent GyrB inhibitors (WBX7 and WBX18), with IC50 values of 0.816 µM and 0.137 µM, respectively. Additional antibacterial activity screening indicated that WBX18 possesses the best antibacterial activity against MRSA, VISA, and VRE strains, with MIC values rangingbetween0.5and 2 µg/mL, which was 2 to over 32 times more potent than that of vancomycin. In vitro safety and metabolic stability, as well as in vivo pharmacokinetics assessments revealed that WBX18 is non-toxic to HUVEC and HepG2, metabolically stable in plasma and liver microsomes (mouse), and displays favorable in vivo pharmacokinetic properties. Finally, docking studies combined with molecular dynamic simulation showed that WBX18 could stably fit in the active site cavity of GyrB.

3.
Nat Commun ; 15(1): 2289, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480767

RESUMO

Deciphering the complex relationship between neuroanatomical connections and functional activity in primate brains remains a daunting task, especially regarding the influence of monosynaptic connectivity on cortical activity. Here, we investigate the anatomical-functional relationship and decompose the neuronal-tracing connectome of marmoset brains into a series of eigenmodes using graph signal processing. These cellular connectome eigenmodes effectively constrain the cortical activity derived from resting-state functional MRI, and uncover a patterned cellular-functional decoupling. This pattern reveals a spatial gradient from coupled dorsal-posterior to decoupled ventral-anterior cortices, and recapitulates micro-structural profiles and macro-scale hierarchical cortical organization. Notably, these marmoset-derived eigenmodes may facilitate the inference of spontaneous cortical activity and functional connectivity of homologous areas in humans, highlighting the potential generalizing of the connectomic constraints across species. Collectively, our findings illuminate how neuronal-tracing connectome eigenmodes constrain cortical activity and improve our understanding of the brain's anatomical-functional relationship.


Assuntos
Callithrix , Conectoma , Animais , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neurônios , Neuroanatomia , Imageamento por Ressonância Magnética
4.
J Pediatr Surg ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38553403

RESUMO

BACKGROUND: Surgical intervention is advisable for both asymptomatic and symptomatic CCAM children. This study aims to compare and analyze the efficacy of thoracoscopic and Da Vinci robot-assisted procedures in the management of CCAM among pediatric patients. METHODS: The clinical data of 188 pediatric patients diagnosed with CCAM and admitted to the Children's Hospital, Zhejiang University School of Medicine, from April 2019 to April 2023 were retrospectively analyzed. The Clavien-Dindo classification was employed for the systematic categorization of postoperative complications. RESULTS: The demographic and clinical characteristics of the patients were comparable between the two groups. Postoperative outcomes, such as the chest tube indwelling rate (92.6% vs 36.2%, p < 0.001∗), chest tube duration (2.0 (2.0-3.0) days vs 1.0 (1.0-2.0) days, p < 0.001∗), and length of postoperative hospital stay (6.0 (5.0-7.0) days vs 5.0 (5.0-6.0) days, p < 0.001∗), favored RATS over VATS. Additionally, there was no significant difference in complications between the two group, but the p-value is in a critical state. Ⅲa complications (mainly composed of postoperative thoracentesis procedures) manifesting as a higher rate in the RATS, nearly double that observed in the VATS. CONCLUSIONS: Robot-assisted thoracoscopic lung resection is demonstrated to be safe and feasible, with notable advantages in short-term postoperative clinical outcomes. Nevertheless, the practicality and long-term benefits of this technique necessitate further refinement and dedicated study. LEVEL OF EVIDENCE: LEVEL III.

5.
Heliyon ; 10(6): e27294, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509875

RESUMO

Breast cancer is a multifaceted and diverse illness that impacts millions of people globally. Identifying the underlying causes of BRCA and creating efficient treatment plans are urgent. Necroptosis is widely involved in cancer development. However, the specific roles of necroptosis in cancer immunotherapy of breast cancer have not been explored. In this study, we aim to establish the connection between necroptosis and immunotherapy in BRCA. TCGA, METABRIC, GSE103091, GSE159956, and GSE96058 were included for bioinformatics analysis. NMF and CoxBoost algorithms were used to develop the necroptosis-related patterns and model, respectively. A necroptosis-related model was developed and determined KLRB1 as a critical tumor suppressor by in vitro validation. The mutation characteristics, immune characteristics, and molecular functions of KLRB1 were explored. We further examined how necroptosis-related KLRB1 functions in BRCA as a powerful tumor suppressor and regulates the activity of macrophages by in vitro validation, including CCK8, EdU, and Transwell assays. KLRB1 was also revealed to be an immunotherapy determinant.

6.
Psychol Med ; : 1-8, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38515276

RESUMO

BACKGROUND: Previous studies have suggested that the habenula (Hb) may be involved in the mechanism of obsessive-compulsive disorder (OCD). However, the specific role of Hb in OCD remains unclear. This study aimed to explore the structural and functional abnormalities of Hb in OCD and their relationship with the clinical symptoms. METHODS: Eighty patients with OCD and 85 healthy controls (HCs) were recruited as the primary dataset. The grey matter volume, resting-state functional connectivity (FC), and effective connectivity (EC) of the Hb were calculated and compared between OCD group and HCs. An independent replication dataset was used to verify the stability and robustness of the results. RESULTS: Patients with OCD exhibited smaller Hb volume and increased FC of right Hb-left hippocampus than HCs. Dynamic causal model revealed an increased EC from left hippocampus to right Hb and a less inhibitory causal influence from the right Hb to left hippocampus in the OCD group compared to HCs. Similar results were found in the replication dataset. CONCLUSIONS: This study suggested that abnormal structure of Hb and hippocampus-Hb connectivity may contribute to the pathological basis of OCD.

7.
Mucosal Immunol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38555025

RESUMO

ETS translocation variant 5 (ETV5) has been implicated in the pathogenesis of inflammatory bowel disease (IBD). However, the exact roles of ETV5 in regulating CD4+ T cell-mediated intestinal inflammation and fibrosis formation remain unclear. Here, we reveal that ETV5 overexpression induced IL-9 and its transcription factor IRF4 expression in naïve IBD CD4+ T cells under Th9-polarizing conditions. Silencing of IRF4 inhibited ETV5-induced IL-9 expression. CD4+ T cell-specific ETV5 deletion (CKO) ameliorated intestinal inflammation and fibrosis in TNBS-induced experimental colitis and CD4+ T cell-transferred Rag1-/- colitis mice, characterized by less CD4+ T cell infiltration, lower fibroblast activation and collagen deposition in the colonic tissues. Furthermore, IL-9 treatment aggressive TNBS-induced intestinal fibrosis in CKO and wild type (WT) control mice. In vitro, human intestinal fibroblasts cocultured with ETV5 overexpressed-Th9 cells expressed higher levels of collagen I and III, whereas an inclusion of anti-IL-9 antibody could reverse this effect. RNA sequencing analysis demonstrated that IL-9 upregulated TAF1 expression in human intestinal fibroblasts. Clinic data showed that number of α-SMA+TAF1+ fibroblasts are higher in inflamed mucosa of IBD patients. Importantly, TAF1 siRNA treatment suppressed IL-9-mediated profibrotic effect in vitro. These findings reveal that CD4+ T cell-derived ETV5 promotes intestinal inflammation and fibrosis through upregulating IL-9-mediated intestinal inflammatory and fibrotic response in IBD. Thus, the ETV5/IL-9 signal pathway in T cells might represent a novel therapeutic target for intestinal inflammation and fibrosis in IBD.

8.
Comput Biol Med ; 171: 108165, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402838

RESUMO

Virtual screening (VS) has been incorporated into the paradigm of modern drug discovery. This field is now undergoing a new wave of revolution driven by artificial intelligence and more specifically, machine learning (ML). In terms of those out-of-the-box datasets for model training or benchmarking, their data volume and applicability domain are limited. They are suffering from the biases constantly reported in the ML application. To address these issues, we present a novel benchmark named MUBDsyn. The utilization of synthetic decoys (i.e., presumed inactives) is the main feature of MUBDsyn, where deep reinforcement learning was leveraged for bias control during decoy generation. Then, we carried out extensive validations on this new benchmark. First, we confirmed that MUBDsyn was superior to the classical benchmarks in control of domain bias, artificial enrichment bias and analogue bias. Moreover, we found that the assessment of ML models based on MUBDsyn was less biased as revealed by the analysis of asymmetric validation embedding bias. In addition, MUBDsyn showed better setting of benchmarking challenge for deep learning models compared with NRLiSt-BDB. Overall, we have proven that MUBDsyn is the close-to-ideal benchmark for VS. The computational tool is publicly available for the easy extension of MUBDsyn.


Assuntos
Inteligência Artificial , Benchmarking , Descoberta de Drogas , Aprendizado de Máquina , Viés
9.
Nanomaterials (Basel) ; 14(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38334511

RESUMO

Advancements in brain-machine interfaces and neurological treatments urgently require the development of improved brain electrodes applied for long-term implantation, where traditional and polymer options face challenges like size, tissue damage, and signal quality. Carbon nanotubes are emerging as a promising alternative, combining excellent electronic properties and biocompatibility, which ensure better neuron coupling and stable signal acquisition. In this study, a new flexible brain electrode array based on 99.99% purity of single-walled carbon nanotubes (SWCNTs) was developed, which has 30 um × 40 um size, about 5.1 kΩ impedance, and 14.01 dB signal-to-noise ratio (SNR). The long-term implantation experiment in vivo in mice shows the proposed brain electrode can maintain stable LFP signal acquisition over 12 weeks while still achieving an SNR of 3.52 dB. The histological analysis results show that SWCNT-based brain electrodes induced minimal tissue damage and showed significantly reduced glial cell responses compared to platinum wire electrodes. Long-term stability comes from SWCNT's biocompatibility and chemical inertness, the electrode's flexible and fine structure. Furthermore, the new brain electrode array can function effectively during 7-Tesla magnetic resonance imaging, enabling the collection of local field potential and even epileptic discharges during the magnetic scan. This study provides a comprehensive study of carbon nanotubes as invasive brain electrodes, providing a new path to address the challenge of long-term brain electrode implantation.

10.
Mol Psychiatry ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351174

RESUMO

Individuals with depression have the highest lifetime prevalence of suicide attempts (SA) among mental illnesses. Numerous neuroimaging studies have developed biomarkers from task-related neural activation in depressive patients with SA, but the findings are inconsistent. Empowered by the contemporary interconnected view of depression as a neural system disorder, we sought to identify a specific brain circuit utilizing published heterogeneous neural activations. We systematically reviewed all published cognitive and emotional task-related functional MRI studies that investigated differences in the location of neural activations between depressive patients with and without SA. We subsequently mapped an underlying brain circuit functionally connecting to each experimental activation using a large normative connectome database (n = 1000). The identified SA-related functional network was compared to the network derived from the disease control group. Finally, we decoded this convergent functional connectivity network using microscale transcriptomic and chemo-architectures, and macroscale psychological processes. We enrolled 11 experimental tasks from eight studies, including depressive patients with SA (n = 147) and without SA (n = 196). The heterogeneous SA-related neural activations localized to the somato-cognitive action network (SCAN), exhibiting robustness to little perturbations and specificity for depression. Furthermore, the SA-related functional network was colocalized with brain-wide gene expression involved in inflammatory and immunity-related biological processes and aligned with the distribution of the GABA and noradrenaline neurotransmitter systems. The findings demonstrate that the SA-related functional network of depression is predominantly located at the SCAN, which is an essential implication for understanding depressive patients with SA.

11.
World J Surg Oncol ; 22(1): 49, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331878

RESUMO

BACKGROUND: TMPRSS2-ERG (T2E) fusion is highly related to aggressive clinical features in prostate cancer (PC), which guides individual therapy. However, current fusion prediction tools lacked enough accuracy and biomarkers were unable to be applied to individuals across different platforms due to their quantitative nature. This study aims to identify a transcriptome signature to detect the T2E fusion status of PC at the individual level. METHODS: Based on 272 high-throughput mRNA expression profiles from the Sboner dataset, we developed a rank-based algorithm to identify a qualitative signature to detect T2E fusion in PC. The signature was validated in 1223 samples from three external datasets (Setlur, Clarissa, and TCGA). RESULTS: A signature, composed of five mRNAs coupled to ERG (five ERG-mRNA pairs, 5-ERG-mRPs), was developed to distinguish T2E fusion status in PC. 5-ERG-mRPs reached 84.56% accuracy in Sboner dataset, which was verified in Setlur dataset (n = 455, accuracy = 82.20%) and Clarissa dataset (n = 118, accuracy = 81.36%). Besides, for 495 samples from TCGA, two subtypes classified by 5-ERG-mRPs showed a higher level of significance in various T2E fusion features than subtypes obtained through current fusion prediction tools, such as STAR-Fusion. CONCLUSIONS: Overall, 5-ERG-mRPs can robustly detect T2E fusion in PC at the individual level, which can be used on any gene measurement platform without specific normalization procedures. Hence, 5-ERG-mRPs may serve as an auxiliary tool for PC patient management.


Assuntos
Neoplasias da Próstata , Transcriptoma , Masculino , Humanos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , RNA Mensageiro/genética , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/uso terapêutico
12.
Immunopharmacol Immunotoxicol ; 46(2): 229-239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38194243

RESUMO

BACKGROUND: Psoriasis is characterized by inflammation and hyperproliferation of epidermal keratinocytes. Cycloastragenol (CAG) is an active molecule of Astragalus membranaceus that potentially plays a repressive role in psoriasis. Activated cell autophagy is an effective pathway for alleviating psoriasis progression. Thus, we investigated the role of CAG in the proliferation and autophagy of interleukin (IL)-22-stimulated keratinocytes. METHODS: A psoriasis model was established by stimulating HaCaT cells with IL-22. Gene or protein expression levels were measured by qRT-PCR or western blot. Autophagy flux was observed with mRFP-GFP-LC3 adenovirus transfection assay under confocal microscopy. Stanniocalcin-1 (STC1) secretion levels were determined using ELISA kits. The apoptosis rate was assessed using flow cytometry. Interactions between miR-145 and STC1 or STC1 and Notch1 were validated by luciferase reporter gene assays, RIP, and Co-IP assays. RESULTS: CAG repressed cell proliferation and promoted apoptosis and autophagy in IL-22-stimulated HaCaT cells. Additionally, CAG promoted autophagy by enhancing miR-145. STC1 silencing ameliorated autophagy repression in IL-22-treated HaCaT cells. Moreover, miR-145 negatively regulated STC1, and STC1 was found to activate Notch1. Lastly, STC1 overexpression reversed CAG-promoted autophagy. CONCLUSION: CAG alleviated keratinocyte hyperproliferation through autophagy enhancement via regulating the miR-145/STC1/Notch1 axis in psoriasis.


Assuntos
Glicoproteínas , MicroRNAs , Psoríase , Sapogeninas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Queratinócitos/metabolismo , Psoríase/tratamento farmacológico , Psoríase/genética , Proliferação de Células/genética
13.
EBioMedicine ; 100: 104962, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184937

RESUMO

BACKGROUND: Liver cirrhosis (LC) is the highest risk factor for hepatocellular carcinoma (HCC) development worldwide. The efficacy of the guideline-recommended surveillance methods for patients with LC remains unpromising. METHODS: A total of 4367 LCs not previously known to have HCC and 510 HCCs from 16 hospitals across 11 provinces of China were recruited in this multi-center, large-scale, cross-sectional study. Participants were divided into Stage Ⅰ cohort (510 HCCs and 2074 LCs) and Stage Ⅱ cohort (2293 LCs) according to their enrollment time and underwent Tri-phasic CT/enhanced MRI, US, AFP, and cell-free DNA (cfDNA). A screening model called PreCar Score was established based on five features of cfDNA using Stage Ⅰ cohort. Surveillance performance of PreCar Score alone or in combination with US/AFP was evaluated in Stage Ⅱ cohort. FINDINGS: PreCar Score showed a significantly higher sensitivity for the detection of early/very early HCC (Barcelona stage A/0) in contrast to US (sensitivity of 51.32% [95% CI: 39.66%-62.84%] at 95.53% [95% CI: 94.62%-96.38%] specificity for PreCar Score; sensitivity of 23.68% [95% CI: 14.99%-35.07%] at 99.37% [95% CI: 98.91%-99.64%] specificity for US) (P < 0.01, Fisher's exact test). PreCar Score plus US further achieved a higher sensitivity of 60.53% at 95.08% specificity for early/very early HCC screening. INTERPRETATION: Our study developed and validated a cfDNA-based screening tool (PreCar Score) for HCC in cohorts at high risk. The combination of PreCar Score and US can serve as a promising and practical strategy for routine HCC care. FUNDING: A full list of funding bodies that contributed to this study can be found in Acknowledgments section.


Assuntos
Carcinoma Hepatocelular , Ácidos Nucleicos Livres , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/epidemiologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/epidemiologia , alfa-Fetoproteínas , Estudos Transversais , Detecção Precoce de Câncer/métodos , Ultrassonografia/métodos , Cirrose Hepática/diagnóstico , Cirrose Hepática/complicações , Biomarcadores Tumorais
14.
J Chem Inf Model ; 64(3): 575-583, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38265916

RESUMO

Discovery of small-molecule antibiotics with novel chemotypes serves as one of the essential strategies to address antibiotic resistance. Although a considerable number of computational tools committed to molecular design have been reported, there is a deficit in holistic and efficient tools specifically developed for small-molecule antibiotic discovery. To address this issue, we report AutoMolDesigner, a computational modeling software dedicated to small-molecule antibiotic design. It is a generalized framework comprising two functional modules, i.e., generative-deep-learning-enabled molecular generation and automated machine-learning-based antibacterial activity/property prediction, wherein individually trained models and curated datasets are out-of-the-box for whole-cell-based antibiotic screening and design. It is open-source, thus allowing for the incorporation of new features for flexible use. Unlike most software programs based on Linux and command lines, this application equipped with a Qt-based graphical user interface can be run on personal computers with multiple operating systems, making it much easier to use for experimental scientists. The software and related materials are freely available at GitHub (https://github.com/taoshen99/AutoMolDesigner) and Zenodo (https://zenodo.org/record/10097899).


Assuntos
Inteligência Artificial , Software , Simulação por Computador
15.
J Exp Clin Cancer Res ; 43(1): 35, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287371

RESUMO

BACKGROUND: Hepatocellular Carcinoma (HCC) is a matter of great global public health importance; however, its current therapeutic effectiveness is deemed inadequate, and the range of therapeutic targets is limited. The aim of this study was to identify early growth response 1 (EGR1) as a transcription factor target in HCC and to explore its role and assess the potential of gene therapy utilizing EGR1 for the management of HCC. METHODS: In this study, both in vitro and in vivo assays were employed to examine the impact of EGR1 on the growth of HCC. The mouse HCC model and human organoid assay were utilized to assess the potential of EGR1 as a gene therapy for HCC. Additionally, the molecular mechanism underlying the regulation of gene expression and the suppression of HCC growth by EGR1 was investigated. RESULTS: The results of our investigation revealed a notable decrease in the expression of EGR1 in HCC. The decrease in EGR1 expression promoted the multiplication of HCC cells and the growth of xenografted tumors. On the other hand, the excessive expression of EGR1 hindered the proliferation of HCC cells and repressed the development of xenografted tumors. Furthermore, the efficacy of EGR1 gene therapy was validated using in vivo mouse HCC models and in vitro human hepatoma organoid models, thereby providing additional substantiation for the anti-cancer role of EGR1 in HCC. The mechanistic analysis demonstrated that EGR1 interacted with the promoter region of phosphofructokinase-1, liver type (PFKL), leading to the repression of PFKL gene expression and consequent inhibition of PFKL-mediated aerobic glycolysis. Moreover, the sensitivity of HCC cells and xenografted tumors to sorafenib was found to be increased by EGR1. CONCLUSION: Our findings suggest that EGR1 possesses therapeutic potential as a tumor suppressor gene in HCC, and that EGR1 gene therapy may offer benefits for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicólise , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/metabolismo , Sorafenibe/farmacologia
16.
Vet Res ; 55(1): 10, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233899

RESUMO

Toxoplasma gondii is among the most important parasites worldwide. The apicoplast is a unique organelle shared by all Apicomplexan protozoa. Increasing lines of evidence suggest that the apicoplast possesses its own ubiquitination system. Deubiquitination is a crucial step executed by deubiquitinase (DUB) during protein ubiquitination. While multiple components of ubiquitination have been identified in T. gondii, the deubiquitinases involved remain unknown. The aim of the current study was to delineate the localization of TgOTU7 and elucidate its functions. TgOTU7 was specifically localized at the apicoplast, and its expression was largely regulated during the cell cycle. Additionally, TgOTU7 efficiently breaks down ubiquitin chains, exhibits linkage-nonspecific deubiquitinating activity and is critical for the lytic cycle and apicoplast biogenesis, similar to the transcription of the apicoplast genome and the nuclear genes encoding apicoplast-targeted proteins. Taken together, the results indicate that the newly described deubiquitinase TgOTU7 specifically localizes to the apicoplast and affects the cell growth and apicoplast homeostasis of T. gondii.


Assuntos
Apicoplastos , Toxoplasma , Animais , Toxoplasma/genética , Apicoplastos/genética , Apicoplastos/metabolismo , Ciclo Celular , Homeostase , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
17.
Adv Sci (Weinh) ; 11(2): e2304408, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37957540

RESUMO

Although the dysregulation of bile acid (BA) composition has been associated with fibrosis progression, its precise roles in liver fibrosis is poorly understood. This study demonstrates that solute carrier family 27 member 5 (SLC27A5), an enzyme involved in BAs metabolism, is substantially downregulated in the liver tissues of patients with cirrhosis and fibrosis mouse models. The downregulation of SLC27A5 depends on RUNX family transcription factor 2 (RUNX2), which serves as a transcriptional repressor. The findings reveal that experimental SLC27A5 knockout (Slc27a5-/- ) mice display spontaneous liver fibrosis after 24 months. The loss of SLC27A5 aggravates liver fibrosis induced by carbon tetrachloride (CCI4 ) and thioacetamide (TAA). Mechanistically, SLC27A5 deficiency results in the accumulation of unconjugated BA, particularly cholic acid (CA), in the liver. This accumulation leads to the activation of hepatic stellate cells (HSCs) by upregulated expression of early growth response protein 3 (EGR3). The re-expression of hepatic SLC27A5 by an adeno-associated virus or the reduction of CA levels in the liver using A4250, an apical sodium-dependent bile acid transporter (ASBT) inhibitor, ameliorates liver fibrosis in Slc27a5-/- mice. In conclusion, SLC27A5 deficiency in mice drives hepatic fibrosis through CA-induced activation of HSCs, highlighting its significant implications for liver fibrosis treatment.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Animais , Humanos , Camundongos , Ácidos e Sais Biliares , Ácido Cólico/efeitos adversos , Ácido Cólico/metabolismo , Modelos Animais de Doenças , Proteínas de Transporte de Ácido Graxo/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/patologia
18.
Arch Toxicol ; 98(2): 395-408, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103071

RESUMO

Artificial light at night (ALAN) pollution has been regarded as a global environmental concern. More than 80% of the global population is exposed to light pollution. Exacerbating this issue, artificially lit outdoor areas are growing by 2.2% per year, while continuously lit areas have brightened by 2.2% each year due to rapid population growth and expanding urbanization. Furthermore, the increasing prevalence of night shift work and smart device usage contributes to the inescapable influence of ALAN. Studies have shown that ALAN can disrupt endogenous biological clocks, resulting in a disturbance of the circadian rhythm, which ultimately affects various physiological functions. Up until now, scholars have studied various disease mechanisms caused by ALAN that may be related to the response of the circadian system to light. This review outlines the molecular mechanisms by which ALAN causes circadian rhythm abnormalities in sleep disorders, endocrine diseases, cardiovascular disease, cancer, immune impairment, depression, anxiety and cognitive impairments.


Assuntos
Poluição Luminosa , Jornada de Trabalho em Turnos , Iluminação/efeitos adversos , Ritmo Circadiano/fisiologia , Poluição Ambiental
19.
Acta Pharm Sin B ; 13(12): 4945-4962, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045053

RESUMO

The bacterial ATP-competitive GyrB/ParE subunits of type II topoisomerase are important anti-bacterial targets to treat super drug-resistant bacterial infections. Herein we discovered novel pyrrolamide-type GyrB/ParE inhibitors based on the structural modifications of the candidate AZD5099 that was withdrawn from the clinical trials due to safety liabilities such as mitochondrial toxicity. The hydroxyisopropyl pyridazine compound 28 had a significant inhibitory effect on Gyrase (GyrB, IC50 = 49 nmol/L) and a modest inhibitory effect on Topo IV (ParE, IC50 = 1.513 µmol/L) of Staphylococcus aureus. It also had significant antibacterial activities on susceptible and resistant Gram-positive bacteria with a minimum inhibitory concentration (MIC) of less than 0.03 µg/mL, which showed a time-dependent bactericidal effect and low frequencies of spontaneous resistance against S. aureus. Compound 28 had better protective effects than the positive control drugs such as DS-2969 (5) and AZD5099 (6) in mouse models of sepsis induced by methicillin-resistant Staphylococcus aureus (MRSA) infection. It also showed better bactericidal activities than clinically used vancomycin in the mouse thigh MRSA infection models. Moreover, compound 28 has much lower mitochondrial toxicity than AZD5099 (6) as well as excellent therapeutic indexes and pharmacokinetic properties. At present, compound 28 has been evaluated as a pre-clinical drug candidate for the treatment of drug-resistant Gram-positive bacterial infection. On the other hand, compound 28 also has good inhibitory activities against stubborn Gram-negative bacteria such as Escherichia coli (MIC = 1 µg/mL), which is comparable with the most potent pyrrolamide-type GyrB/ParE inhibitors reported recently. In addition, the structure-activity relationships of the compounds were also studied.

20.
Commun Biol ; 6(1): 1126, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935873

RESUMO

N-acetylserotonin O-methyltransferase (ASMT) is responsible for melatonin biosynthesis. The Asmt gene is located on the X chromosome, and its genetic polymorphism is associated with depression in humans. However, the underlying mechanism remains unclear. Here, we use CRISPR/Cas9 to delete 20 bp of exon 2 of Asmt, and construct C57BL/6J mouse strain with Asmt frameshift mutation (Asmtft/ft). We show that female Asmtft/ft mice exhibit anxiety- and depression-like behaviors, accompanied by an obvious structural remodeling of gut microbiota. These behavioral abnormalities are not observed in male. Moreover, female Asmtft/ft mice show a lower neurobehavioral adaptability to exercise, while wild-type shows a "higher resilience". Cross-sectional and longitudinal analysis indicates that the structure of gut microbiota in Asmtft/ft mice is less affected by exercise. These results suggests that Asmt maintains the plasticity of gut microbiota in female, thereby enhancing the neurobehavioral adaptability to exercise.


Assuntos
Microbioma Gastrointestinal , Melatonina , Humanos , Animais , Masculino , Feminino , Camundongos , Acetilserotonina O-Metiltransferasa/química , Acetilserotonina O-Metiltransferasa/genética , Estudos Transversais , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...